

Efficiently Representing
CPU-GPU Performance

Jonathon Anderson
Rice University

July 7, 2025

Overview
• Novel enhancements to performance data representation

• Same data, but in a smaller size

• Adjustments to improve parallelism in post-mortem analysis
• Same high-level structure, but written faster

• Ongoing work

2

Examples: Calling Context Tree (CCT)

3

Image credit: LLNL/Hatchet

Examples: Flat Sampling / Flat Vector

4

Image credit: Nvidia

Examples: Call Graph

5

main

sort

solve

fetch

60%
40%

10% 90%

22

47

5,000

10,000

6

HPCToolkit’s Instruction-Level Attribution
within GPU Kernels (CCT)

7

HPCToolkit’s Instruction-Level Attribution
within GPU Kernels (CCT)

8

HPCToolkit’s Measurement Approach
• HPCToolkit uses different representations (for measurement) depending on the performance measured

• CPU performance: attribute samples to full calling context (CCT)
• Application stack is unwound at runtime

• GPU performance: attribute flat samples to instructions within each GPU kernel
• Limitation of the GPU vendor runtime APIs
• AMD GPU PC samples: correlation ids enable mapping to full CPU calling context of kernel launch
• Nvidia & Intel GPU PC samples: can’t be correlated to CPU calling context without a performance hit

• GPU APIs don’t provide correlation id; correlation accomplished by serializing all GPU kernels

• HPCToolkit’s post-mortem analysis converts each of the representations to CCT

• Flat samples are apportioned across plausible call paths
• Attributed to static call graph, then expanded to CCT
• If a node has multiple callers (red), it’s cost is distributed based on call counts
• CCT contains multiple nodes for each GPU function, one for each plausible caller

• …Recursively to cover all plausible call paths

HPCToolkit’s CCT-based Attribution

9

Call graph for one GPU kernel of Quicksilver (w/o optimization)

Shortcomings of CCT-based Attribution
• Mercury: Monte Carlo transport app developed at LLNL

• ~2K functions in one GPU kernel
• ~500K call paths to a single, widely-used leaf function
• One function called cuda_div_… >100 times

• In practice, HPCToolkit fails to construct GPU CCTs for Mercury
• Unfeasibly slow post-mortem analysis, reconstructs contexts for only 1 instruction per second!
• Why? CCT explodes in size during analysis!

• Need to distribute performance ~500K ways, for each instruction in one function
• → Need a better data representation that won’t explode

10

10 (50)

Novel Graph-based Data Representation
• Directed (Calling) Context Graph

• Generalization of other representations
• Nodes = unique measured contexts
• Edges = control flow (e.g. calls)
• Edge weights = apportion between callers
• Node values = X (Y)

• X = Node exclusive cost
• Y = Node inclusive cost

• Efficient for both CPU & GPU performance
• …But with no visible distinction between the two

11

25%
75%

50%
50%

8 (8)

16 (20)

6 (30)

5 (35)

10 (100)

12 (12)

22 (25)

6 (40)

5 (5)

5 (60)

CPU

GPU

GPU

Top-down Analysis Example

12

3 (3)

22 (25)

6 (40)

10 (50)

5 (60)

10 (100)

10 (50)

25%
75%

50%
50%

8 (8)

16 (20)

6 (30)

5 (35)

10 (100)

12 (12)

22 (25)

6 (40)

5 (5)

5 (60) 5 (35)

9 (9)

5 (5)

…

…

…

Bottom-up Analysis Example

13

20

13

+ 9) = 13

9

9

10 (50)

25%
75%

50%
50%

8 (8)

16 (20)

6 (30)

5 (35)

10 (100)

12 (12)

22 (25)

6 (40)

5 (5)

5 (60)
…

7

4

(4

Estimated Size Reduction

14

• Quicksilver: proxy app for Mercury
• 36 functions (nodes in the DCCG)
• 58 nodes in the static CCT

• Estimated size reduction: 37.9%
(Assuming uniform instruction count per function)

26.4%

(Estimate using actual instruction count per function)Static call graph of one GPU kernel

Estimated Size Reduction

15

• Quicksilver w/o optimization
• 145 functions (nodes in the DCCG)
• 409 nodes in the static CCT

• Estimated size reduction: 64.5%
(Assuming uniform instruction count per function)

48.7%

(Estimate using actual instruction count per function)Static call graph of one GPU kernel

Estimated Size Reduction

16

• Mercury
• ~2K functions (nodes in the DCCG)
• ~500K nodes in the static CCT (for one function)

• Estimated size reduction: 99.6%?
(Estimate using rough guess based on limited info)

90.0%?

(Complete guess based on left estimate)

Overview
• Novel enhancements to performance data representation

• Same data, but in a smaller size

• Adjustments to improve parallelism in post-mortem analysis
• Same high-level structure, but written faster

• Ongoing work

17

18

Parallel Bottleneck Of hpcprof-mpi

Unify ~2K CCTs across 8 nodes using 8 MPI ranks x 64 threads

Removing Communication
• Class 1: unique identifiers

• Mostly for CCT nodes
• All ranks use the same id to refer to a CCT node

• CCT nodes are unified based on “unique” info
• Caller node, instruction offset, source line, etc.
• Only merge nodes that match exactly

• We only need consensus… what about hashes?
• Same context → same hash in all MPI ranks
• Hashing local data is much faster than MPI

synchronization/communication
• …But only useful if hashes don’t collide

19

Effective Identifiers Using Hashes

20

• We can avoid hash conflict resolution in practice, assuming:
• Maximum limit of ~4 billion calling contexts

• Based on HPCToolkit’s current 32-bit identifiers
• Each node is a hash of “its (unique) location in the graph”

• 128-bit hashes (statistically) never conflict (w/ >99.9999% probability)
• Used for communication and validation during post-mortem analysis

• 64-bit hashes are expected to have a small number of conflicts
• Used to identify each graph node and edge on-disk
• Disambiguate contexts at read time using graph traversal

• For performance, always leave hash conflicts unresolved
• If a conflict causes validation errors, just restart the process (<0.0000001% chance)
• Otherwise leave it be, disambiguate at read time

21

Est. Speedup of Post-mortem Analysis

~20% speedup

Overview
• Novel enhancements to performance data representation

• Same data, but in a smaller size

• Adjustments to improve parallelism in post-mortem analysis
• Same high-level structure, but written faster

• Ongoing work

22

HPCToolkit’s Performance Atlas
• Next evolution of the HPCToolkit database format

• Development is ongoing
• Atlas library implementation: ~60%
• Integration with hpcprof: <5%
• Integration with hpcviewer: 0%

• Will be available as a separate library
• First-party support for external clients

23

Recap
• Novel enhancements to performance data representation

• New graph-based representation for performance data
• Expect significantly smaller than CCT-based representation

• Adjustments to improve parallelism in post-mortem analysis
• Hash-based identifiers to avoid MPI communication during analysis
• Expect ~20% speedup over MPI consensus algorithm

• Atlas library implementation is ongoing
• Making steady progress towards initial working implementation
• Will be available as a separate library to ease adoption

24

Backup Slides

25

Determining Hash Sizes
• 128-bit hashes are sufficient to identify 232 items uniquely with >99.9999% probability:

a. Actually only need 83 bits but round up to 128 for technical convenience
b. Need at least 32 bits for 232 distinct hash values
c. With 32×2 bits, probability of collision among 232 items P ≈ 50% = 2-1

• From approximate solution to the generalized Birthday Problem
d. Adding 19 bits multiplies collision probability by 2-19, so collision probability is now 2-20

• Each extra bit reduces probability by ~½
e. 2-20 < 0.0000001%, so probability of no collision is >99.9999%

26

ff16d9b8 671ac65c 30bb8ae6 519d6fdb

32 bits to store 232
distinct hashes, many
many hash collisions

×2 bits to reduce
probability of collision
to ~50%

+19 bits reduce
probability to 2-20

Rounded up to 128 bits for
technical convenience

Identifier Hash Construction (128-bit)

27

• Identifier hash for a DCCG node is a Merkle hash combining ids for dominators + flat hashes of node/edge content
• Dominators are from measurement data, e.g. CPU stack unwind, GPU launch site + instruction offset
• Edges may not be in DCCG, instead artificial edges just for hash construction (e.g. GPU offload)

main.c:74main() gpuLaunch gpu.cu:24
Enclosing
function

Call GPU
offload

[1ffa] [294d] [67cc][ea1a] [4712] [b14c] [4fb6]
Flat
hashes:

[ea1a]
Id.
hashes:

[cfe2]

[9f08]

[5898]

Identifier Hash Construction (64-bit)

28

main.c:74main() gpuLaunch gpu.cu:24
Enclosing
function

Call GPU
offload

[1f] [29] [67][ea] [47] [b1] [4f]
Flat
hashes:

[ea]
Id.
hashes:

[81]

[08]

[aa]

• Identifier hash for a DCCG node is a Merkle hash combining ids for dominators + flat hashes of node/edge content
• Dominators are from measurement data, e.g. CPU stack unwind, GPU launch site + instruction offset
• Edges may not be in DCCG, instead artificial edges just for hash construction (e.g. GPU offload)

Atlas: Storage Backend-agnostic Design
• Atlas is formed out of “pages”

• Independent contiguous data blobs
• Structured data, serialized w/ FlatBuffers (zero-copy)
• Pages can be stored together or separate

• Pages refer to each other via descriptors
• Can be anything: file offset, index, content hash, etc.
• Heavily inspired by OCI images, but more general

• (Will be) widely compatible across storage media
• POSIX/Lustre file
• DAOS/Rabbit object store
• OCI registry
• NoSQL/key-value database
• …etc.

29

sha256:...

sha256:...

sha256:...

sha256:...

sha256:...

sha256:...

Atlas

