HHHHHHHHHHHHHHH

Efficiently Representing
CPU-GPU Performance

July 7, 2025 Jonathon Anderson

Rice University

. =
Overview mmm HPSF

* Novel enhancements to performance data representation
* Same data, but in a smaller size

* Adjustments to improve parallelism in post-mortem analysis
* Same high-level structure, but written faster

* Ongoing work

Examples: Calling Context Tree (CCT) == HPSF

0.008
0.000
0.000
0.007

— 0.008

— 0.004

Image credit: LLNL/Hatchet

Examples: F

lat Sampling / F

Address

22 0068772

08887172
88887172
80087172
6 80888772
7 8800772
88887172
88887172
88087172
08887172
2 BBBO772
88887172
88887172
6888772
6 8800772
88887172
8 8068772
08887172
88007172
1 8000772
2 BBBBT7FT72
88887172
80887172
88887172
88887172
7 8888772
88607172
) 8000772
88887172
8888772
80887172
88087172

42fabas0
42fababl
42faba70
42fabaso
42faba90
42fabaal
42fababl
42fabacO
42fabad@
42fabaed
42fabafo
42fabbBe
42fa6b10
42fa6b20
42fa6b38
42fabb4o
42fabb58
42fabb6o
42fa6b70
42fabb8e
42fa6b90
42fabbad
42fa6bbo
42fabbc
42fabbde
42fabbel
42fabbfl
42fabeBo
42fabcld
42fabc20
42fabe3n
42fabe4d

Source

IADD3

MoV

IMAD

IMAD

IMAD

IMAD.WIDE

IADD3 73,

IMAD.WIDE

IMAD.WIDE
E A

IMAD.WIDE
A= A

IMAD.WIDE
-E -

IMAD.WIDE

CONSTANT.SYS
CONSTANT.SYS

CONSTANT.SYS

’ '

.CONSTANT.SYS
.CONSTANT.SYS
.CONSTANT.SYS
.CONSTANT.SYS
.CONSTANT.SYS
.CONSTANT.SYS

IMAD.WIDE
.E
DADD
DMUL
DADD
DADD
DMUL
DADD
DFMA
DFMA
DFMA

.SYS

Live
Registers np_sample_count

40

at Vector

Sampling
PEIERC]

40

Sampling |~
(Not Issi

o HPSF

HIGH PERFORMANCE

Image credit: Nvidia

Examples: Call Graph =—joc

HPCToolkit's Instruction-Level Attribution = s
within GPU Kernels (CCT =

File View Filter Help

[profile: qs =

main.cc CollisionEvent.cc X

6 int uniqueNumber = monteCarlo-> materialDatabase-> mat[globalMatIndex]. isolisoIndex]. gid;
int numReacts = monteCarlo->_nuclearData->getNumberReactions(uniqueNumber);

71 for (int reactIndex = 8; reactIndex < numReacts; reactIndex++)

7 currentCrossSection -= macroscopicCrossSection(monteCarlo, reactIndex, mc
1soIndex, mc_particle.energy_group);
1f (currentCrossSection < 8)

selectedTso = isoIndex I
selectedUnigueNumber = uniqueNumber;
selectedReact = reactIndex;
break;
3
¥
}
qs_assert(selectedTso 1= -1);

Top-down view Bottom-up view Flat view

+ 36 MFE ME A~ alvid

GINS: Sum (I) [GINS: Sum (E) |GINS:STL_ANY: Sum (I) |GINS:STL_ANY: Sum (E) |GINS:STL_IFET: Sum (I) |GINS:STL_IFET: Sum (E) [GINS:STL_IDEP:
13 100. 9% g 106. 5% 5.2/e+89 100.0% G- daet

14 » [1] cudaLaunchxeri Soeril 1o 49erd
2% cidataunchie el Tag] 1.30e+11 100.0% 1.19e+11 168.0% 5.27¢+09 160.0% 9.34c4
4 » <gpu kernel> 1.30e+11 100.0% 1.19e+11 160.0% 5.27+09 160.0% 9.33e4
4 Cyeletrackingkernel (Bontecarlos, int, particlevaults, particlevay, .. [*-306%11 100.0 4.080407 0.0% 1.19e+11 100.0% 3.620+487 0.0% 5.27¢+09 100.0% 2.11e407 0.4% 9.34e4
4132 » CycleTrackingtuts (MonteCarlos, int, Particlevaults, particle... [L:3%*11 100.0% 0.03e+09 7.0% 1.19e+11 100.0% 9.01e+09 7.6% 5.24¢+09 99.5% 8.980406 0.2% 9.32e4
426 » [11 CycleTrackingFunction(Montecarlo®, MC_Particles, int, P... 8.36e+10 64.4% 4.12e+08 0.3% 7.25e+10 61.1% 3.65e+68 0.3% 5.21e+69 98.9% 1.02e+08 1.9% 9.25e4
% Toob 4t cyeldTracking ket aa8 8.35+10 64.3% 3.76e+08 0.3% 7.250+410 61.1% 3.34+68 0.3% 5.21e+09 98.8% 9.900+07 1.9% 9.24e4
293 » CollisionEvent(MonteCarlo®, MC_Particles, unsigned int) [,.. 2-2°°*10 40.1% 4.83e489 3.89 4.24e110 37.4% 4.02e109 3.4% 3.85€409 73.1% 4.892408 9.3% 6.37et
4 Toap: at. EplianinnEvant, cex 37 4.09e+10 31.5% 8.15€+08 0.6% 3.42e410 28.8% 6.54e408 0.6% 3.54e+09 67.1% 1.27e+08 2.4% 5.67et
4 loop at CollisionEvent.cc: 71 3.85e+10 29.6% 2.70e+09 2.1% 3.22e410 27.1% 2.06e409 1.7% 3.27e+09 62.0% 2.282+08 4.3% 5.33et

|

441 » NuclearData: :getReactionCrosssection{unsigned int, u... Wl 2:996+10 16.1% 1.09¢+10 8.4% 1.79e+10 15.1% 9.42e+69 7.9% 1.26e+09 23.8% 6.68e+08 12.7% 2,194
253 » (11 NuclearDataReaction::getCrossSection(unsigned ... [l 6:89€409 5.3% 3.77e+09 2.9% 5.86e100 4.9% 3.32e409 2.8% 2.25e408 4.3% 8.24e407 1.6% 8.86et
NuclearData. cc: 253 6.28e+09 4.8% 6.28e+09 1.8% 5.66e+00 4.8% 5.66e+09 4.8% 4.76e+08 9.0% 4.76e+08 9.0% 6.1let
NuclearData.cc: 251 1.850400 1.4% 1.850400 1.4% 1.640400 1.4% 1.64e400 1.4% 8.12e+07 1.5% 8.12e407 1.5% 2.47et
NuclearData.cc: 248 1.61e409 1.2 1.61e+09 1.2% 1.18e400 1.0% 1.18e409 1.0% 1.10e+08 2.1% 1.10e+08 2.1% 3.62e¢
252 » [1] qs vector<NuclearDataSpecies>::operator(](int) 1.29e409 1.0% 1.29e+09 1.0% 1.14e409 1.0% 1.14e+09 1.0% 7.37e+04 0.0% 7.37e+04 0.0% 1.24e¢
Nuclearata.ce: 252 1.12409 0.9% 1.12e409 0.9% 9.480108 0.8% 9.48e408 0.8% 3.44e105 0.0% 3.44e405 0.0% 2.50e¢
252 [1] gs_vector<uclearDataReactions::size() const 9.41e+08 0.7% 9.41e+08 0.7% 8.17e+08 0.7% 8.17e+08 0.7% 4.63et

HPCToolkit's Instruction-Level Attribution = s
within GPU Kernels (CCT) =

414 » [Ll] cudaLaunchXernel=char=
4211 » cudaLaunchKernel [qs]
4 » <gpu kernel>
4 » CycleTrackingKernel(MonteCarlo*, int, ParticleVault*, Particlevau...

4132 » CycleTrackingGuts(MonteCarlo®, int, Particlevault*, Partaicle...

426 » [1] CycleTrackingFunction(MonteCarlo*, MC_Particle&, int, P...

4 loop at CycleTracking.cc: 118
4 63 » CollisionEvent(MonteCarlo*, MC Particle&, unsigned int) [...
4 loop at CollisionEvent.cc: 67

4 loop at CollisionEvent.cc: 71

441 » NuclearData::getReactlonCrossSection{unsigned int, u...
» 253 » [I] NuclearDataReaction::getCrossSection(unsigned
NuclearDala.cc: 253
NuclearData.cc: 251
NuclearData.cc: 248
» 252 » [T] qs vector<NuclearDataSpecies>::operator[]{int)
NuclearData.cc: 252

» 252 » [I] gqs_vector<NuclearDataReaction>::size() const

A_Ar A [PP WP | PUNpIR, [PNPREL | Wy R, e N R S prnl . R - W |

HPCToolkit's Measurement Approach =l

* HPCToolkit uses different representations (for measurement) depending on the performance measured

* CPU performance: attribute samples to full calling context (CCT)
* Application stack is unwound at runtime

* GPU performance: attribute flat samples to instructions within each GPU kernel
* Limitation of the GPU vendor runtime APIs
* AMD GPU PC samples: correlation ids enable mapping to full CPU calling context of kernel launch
* Nvidia & Intel GPU PC samples: can’t be correlated to CPU calling context without a performance hit
* GPU APIs don't provide correlation id; correlation accomplished by serializing all GPU kernels

* HPCToolkit's post-mortem analysis converts each of the representations to CCT

HPCToolkit's CCT-based Attribution = HPSF

* Flat samples are apportioned across plausible call paths
* Attributed to static call graph, then expanded to CCT
* Ifanode has multiple callers (red), it's cost is distributed based on call counts
* CCT contains multiple nodes for each GPU function, one for each plausible caller
* ...Recursively to cover all plausible call paths

Call graph for one GPU kernel of Quicksilver (w/o optimization)

Shortcomings of CCT-based Attribution ==HPsE

* Mercury: Monte Carlo transport app developed at LLNL
e ~2Kfunctions in one GPU kernel
* ~500K call paths to a single, widely-used leaf function
* One function called cuda_div_... >100 times

* In practice, HPCToolkit fails to construct GPU CCTs for Mercury
* Unfeasibly slow post-mortem analysis, reconstructs contexts for only 1 instruction per second!
* Why? CCT explodes in size during analysis!
* Need to distribute performance ~500K ways, for each instruction in one function
* — Need a better data representation that won't explode

Novel Graph-based Data

* Directed (Calling) Context Graph

Generalization of other representations
Nodes = unique measured contexts
Edges = control flow (e.g. calls)
Edge weights = apportion between callers
Node values = X (Y)

* X = Node exclusive cost

* Y = Node inclusive cost

* Efficient for both CPU & GPU performance

...But with no visible distinction between the two

Representation

nnnnnnnnnnnnnnn
rrrrrrrrrrrrrrrr

Top-down Analysis Example = pocl

Bottom-up Analysis Example = pocld

Estimated Size Reduction

* Quicksilver: proxy app for Mercury
* 36 functions (hodes in the DCCQ)
* 58 nodes in the static CCT

* Estimated size reduction: 37.9%
(Assuming uniform instruction count per function)

Static call graph of one GPU kernel

Estimated Size (MB)

wwwwwwwwwwwwwww

B ccT B Graph (DCCG)
0.4

0.3

0.2

0.1

0.0

(Estimate using actual instruction count per function)

Estimated Size Reduction =mm HPSF

* Quicksilver w/o optimization
* 145 functions (nodes in the DCCQ) B CcCT M Graph (DCCG)
* 409 nodes in the static CCT 15

* Estimated size reduction: 64.5%
(Assuming uniform instruction count per function)

~N

> 48.7%

)

s 1.0

[

N

®

©

O

©

E

& 05
0.0

S~ T T
Static call graph of one GPU kernel (Estimate using actual instruction count per function)

Estimated Size Reduction =mm HPSF

* Mercury
* ~2K functions (nodes in the DCCGQG) @ ccT W Graph (DCCG)
* ~500K nodes in the static CCT (for one function) 25000
* Estimated size reduction: 99.6%7?
(Estimate using rough guess based on limited info)
20000
)
s
S 15000
3 - 90.0%?
©
2
£ 10000
z
it
5000
0

(Complete guess based on left estimate)

. =
Overview mmm HPSF

* Novel enhancements to performance data representation
* Same data, but in a smaller size

* Adjustments to improve parallelism in post-mortem analysis
* Same high-level structure, but written faster

* Ongoing work

Parallel Bottleneck Of hpcprof-mpi S HESE

Unify ~2K CCTs across 8 nodes using 8 MPI ranks x 64 threads

Removing Communication o

Class 1: unique identifiers Ranl Input Profiles
* Mostly for CCT nodes 0 1

5
* All ranks use the same id to refer to a CCT node % % % % % % %

CCT nodes are unified based on “unique” info

I X I
* Caller node, instruction offset, source line, etc. H 1 J} H i }L
. | h h ! ‘ ‘
On y merge nodes that matc exacty 1 ﬂ E ﬁ E
* We only need consensus... what about hashes? — T
* Same context — same hash in all MPI ranks [Class1 Analysis Results
* Hashing local data is much faster than MPI 1 T T Jﬁ 1 1
synchronization/communication . e " "
* ...Butonly useful if hashes don’t collide 2ﬂ3 %3 %3 293 2{? 2{?

2/3 ﬂ - ﬂ =T .

m

q

[Per-Profile (Class 2) Output]

[Correlated/Aggregated (Class 1/3) Output]

Effective Identifiers Using Hashes S HPSE

* We can avoid hash conflict resolution in practice, assuming:
* Maximum limit of ~4 billion calling contexts
* Based on HPCToolkit’s current 32-bit identifiers
* Each node is a hash of “its (unique) location in the graph”

128-bit hashes (statistically) never conflict (w/ >99.9999% probability)
* Used for communication and validation during post-mortem analysis

64-bit hashes are expected to have a small number of conflicts
* Used to identify each graph node and edge on-disk
* Disambiguate contexts at read time using graph traversal

For performance, always leave hash conflicts unresolved
* If a conflict causes validation errors, just restart the process (<0.0000001% chance)
* Otherwise leave it be, disambiguate at read time

Est. Speedup of Post-mortem Analysis S HPSF

~20% speedup

. =
Overview mmm HPSF

* Novel enhancements to performance data representation
* Same data, but in a smaller size

* Adjustments to improve parallelism in post-mortem analysis
* Same high-level structure, but written faster

* Ongoing work

HPCToolkit's Performance Atlas = HPSF

* Next evolution of the HPCToolkit database format

* Development is ongoing
* Atlas library implementation: ~60%
* Integration with hpcprof: <5%
* Integration with hpcviewer: 0%

* Will be available as a separate library
* First-party support for external clients

| aeca HHHHHHHHHHHHHHH
RIS romoanon

* Novel enhancements to performance data representation
* New graph-based representation for performance data
* Expect significantly smaller than CCT-based representation

* Adjustments to improve parallelism in post-mortem analysis
* Hash-based identifiers to avoid MPI communication during analysis
* Expect ~20% speedup over MPI consensus algorithm

* Atlas library implementation is ongoing
* Making steady progress towards initial working implementation
* Will be available as a separate library to ease adoption

HHHHHHHHHHHHHHH

Backup Slides

Determining Hash Sizes e HPSE

* 128-bit hashes are sufficient to identify 232 items uniquely with >99.9999% probability:

a.
b.
C.
d.

e.

Actually only need 83 bits but round up to 128 for technical convenience

Need at least 32 bits for 232 distinct hash values

With 32x2 bits, probability of collision among 232 items P = 50% = 2"
* From approximate solution to the generalized Birthday Problem

Adding 19 bits multiplies collision probability by 21, so collision probability is now 22
* Each extra bit reduces probability by ~>

229 < 0.0000001%, so probability of no collision is >99.9999%

tflodo9%8 671lacobc 30bb8aeb 519do6fdb

Y Y Y Y
32 bits to store 23 x2 bits to reduce +19 bits reduce Rounded up to 128 bits for
distinct hashes, many probability of collision probability to 2?9 technical convenience
many hash collisions to ~50%

ldentifier Hash Construction (128-bit) == HPSF

* |dentifier hash for a DCCG node is a Merkle hash combining ids for dominators + flat hashes of node/edge content
* Dominators are from measurement data, e.g. CPU stack unwind, GPU launch site + instruction offset
* Edges may not be in DCCG, instead artificial edges just for hash construction (e.g. GPU offload)

Flat . : , :
hashes: ![eala] [1ffa] 14712 [294d] [o14c] | [67cc] [4b6] |

hashes: [eala]
L

e

[9f08]

[5898]

ldentifier Hash Construction (64-bit) == HPSF

* |dentifier hash for a DCCG node is a Merkle hash combining ids for dominators + flat hashes of node/edge content
* Dominators are from measurement data, e.g. CPU stack unwind, GPU launch site + instruction offset
* Edges may not be in DCCG, instead artificial edges just for hash construction (e.g. GPU offload)

Flat !

hashes: :7 [ea] [11] [47] [29] b1] [67] [41]
d.

hashes: |

Atlas: Storage Backend-agnostic Design ==HPsF

* Atlas is formed out of “pages”
* Independent contiguous data blobs Al
* Structured data, serialized w/ FlatBuffers (zero-copy) as

* Pages can be stored together or separate

* Pages refer to each other via descriptors
* Can be anything: file offset, index, content hash, etc. sha256:. . sha256: .

* Heavily inspired by OCl images, but more general

* (Will be) widely compatible across storage media
* POSIX/Lustre file sha256: ...
* DAOS/Rabbit object store
¢ OClregistry
: NoeiilL/key-value database sha256: ..

sha256:...

sha256....

